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Abstract The Fries number of a benzenoid is the maximum number of benzenoid
hexagons over all of its Kekulé structures (perfect matchings), and a Fries canoni-
cal structure is a perfect matching that realises this maximum. A recently published
algorithm claims to determine Fries canonical structures of benzenoids via iterated
Hadamard products based on the adjacency matrix (Ciesielski et al. in Symmetry
2:1390–1400, 2010). This algorithm is re-examined here. Convergence is typically
rapid and often yields a single candidate perfect matching, but the algorithm can give
an exponential number of choices, of which only a small number are canonical. More
worryingly, the algorithm is found to give incorrect results for the Fries number for
some benzenoids with as few as seven hexagonal faces. We give a combinatorial refor-
mulation of the algorithm in terms of linear combinations of perfect matchings (with
weights at each stage proportional to the products of weights of the edges included in
a matching). In all the cases we have examined, the algorithm converges to a maxi-
mum-weight matching (or combination of maximum-weight matchings), and where
the algorithm fails, either no best Fries matching is of maximum weight, or a best
Fries matching is of maximum weight but a sub-optimal matching of the same weight
is chosen.
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1 Introduction

Benzenoid hydrocarbons form an important subset of π -electron systems, with a vast
literature concerning their physical, chemical and biological properties. Historically,
their study has played a central role in the development of theories of organic chem-
istry, in particular in connection with the concept of aromaticity. This background is
well reviewed in Ref. [1], where it is pointed out that two related ideas, those of Fries
structures [2] and Clar Sextets [3] have helped to give a qualitative understanding
of π -electronic structure and stability of benzenoids and similar compounds. Both
are based on Kekulé structures of the molecule (perfect matchings of the molecular
graph G).

The early work of Fries [2] associated stability with the existence of Kekulé struc-
tures that achieve large numbers of benzenoid hexagons, i.e., hexagons that contain
three double bonds (not necessarily switchable). The cardinality of the maximum set
of benzenoid hexagons over all Kekulé structures is the Fries number, F(G).

Clar’s more sophisticated version of this idea [3] was that stability is conferred by
the existence of Kekulé structures with large numbers of hexagonal rings with three
resonating double bonds (i.e., the number of Clar sextets). On the Clar view, the figure
of merit is the Clar Number, C(G), i.e., the cardinality of the maximum independent
set of hexagons, each carrying three switchable double bonds. Structures that share the
maximum number of isolated Clar sextets may then be ranked more finely in stability
using other empirical considerations [1,4].

Both F(G) and C(G) can be found exactly by several methods, e.g., by one
approach that takes linear time and uses linear programming [5–7]. In Ref. [1], the
authors present a matrix algorithm based on Hadamard products that is intended to
find what they term a ‘Fries canonical structure’ for benzenoid hydrocarbons i.e., a
perfect matching that contains the maximum number F(G) of benzenoid hexagons.
Convergence is typically rapid and the algorithm often yields a single candidate per-
fect matching, but the algorithm sometimes gives an exponential number of choices,
of which only a small number are canonical. The authors of the algorithm do not
suggest a way of dealing with this problem, other than brute-force inspection, which
can require exponential time for some quite simply defined families of benzenoids,
as we will show below. A more serious problem is that the algorithm does not always
deliver a Fries canonical structure, again as will be shown below.

Canonical matchings are proposed in Ref. [1] both as targets of interest in them-
selves, and as intermediates in the generation of Clar structures with the maximum
number of sextets. An implicit assumption [1] is that a Kekulé structure with F(G)

benzenoid hexagons can always be used to generate a structure with C(G) Clar sextets
by selection of a maximum subset of independent hexagons.

In the present paper, we re-examine the procedure described in Ref. [1], which we
will call the CKC algorithm, test it on complete sets of small benzenoids, and show
that it does not always lead to a canonical Fries structure, a fact which at least casts
doubt on its proposed use for finding Kekulé structures that realise the Clar number.
The smallest (i.e., those with fewest hexagons) counterexamples to the algorithm have
seven hexagons. A combinatorial reformulation is then used to show that the algorithm
can be understood as working with convex combinations of perfect matchings, with
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the weight of each matching computed from products of edge weights of included dou-
ble-bond edges, and where the edge weights change at each iteration of the algorithm.
In all the cases of failure of the algorithm that we have examined, it is converging to a
matching of maximum weight matching or a combination of such matchings, where
either a canonical Fries matching is not of maximum weight, or is of maximum weight
but is not the one chosen by CKC.

2 The CKC algorithm

The authors of Ref. [1] do not give an explicit statement of their working definition
of the class of benzenoids, but we assume that they intend to include at least the mol-
ecules that correspond to simple planar 2-connected graphs embedded in the plane
such that all internal faces are hexagons, all vertices not on the external face have
degree 3 and vertices on the external face have degree 2 or 3. This will be our working
definition of benzenoids. We will show that the algorithm sometimes fails even within
this restricted definition. The algorithm in Ref. [1] uses the Hadamard product [8].
The Hadamard product of two matrices A and B, indicated by a circle, is the matrix
H with entries hu,v that are the products of the corresponding entries in A and B, i.e.,

H = A ◦ B ⇔ hu,v = au,v bu,v. (1)

The CKC algorithm is then defined as follows [1]. For a given benzenoid with n verti-
ces (carbon centres), first construct the n ×n adjacency matrix, A = P0, with au,v = 1
if vertices u and v are connected by an edge, and 0 otherwise. Then for k = 1, 2 . . .

the matrix Pk is defined by

Pk = Pk−1 ◦ P−1
k−1. (2)

It is assumed in Ref. [1] that the procedure will converge to some limiting matrix P∞,
and in practice convergence was found to be rapid for the examples tested there and
for the many cases that we have examined (see below).

This mysterious-looking procedure has some obvious properties.

(i) The construction can proceed only if A has an inverse, i.e., if the molecular
graph is non-singular. Appearance of a singular matrix Pk at any later stage
will also terminate the process.

(ii) The starting adjacency matrix A is symmetric, so A−1 is also symmetric, and
therefore P1 is symmetric. Hence, each subsequent iterate Pk is symmetric in
the sense that the entries in positions u, v and v, u are equal. Furthermore, the
matrix Pk is also symmetric in the sense in that it is transformed into itself
under all automorphisms of the graph, a property that it inherits from A.

(iii) The nature of the Hadamard product is that each multiplicand acts as a mask
for the other, leading to a zero entry in the product matrix if and only if there is
a zero entry in that position in at least one of the matrices being multiplied. In
the first iteration, the adjacency matrix has, by definition, non-zero entries in
positions corresponding to bonds (edges of the molecular graph) and nowhere
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else. Hence P1 and all subsequent Pk have the property that non-zero entries
do not occur for non-bonded pairs u, v. Likewise, all Pk matrices have zero
entries on the diagonal.

The entries in the matrix A−1 for a non-singular benzenoid graph have a well-
understood chemical significance. In chemistry, the Pauling Bond Order [9] of a bond
(u, v) is the fraction of the full set of Kekulé structures of the graph in which that
edge (u, v) carries a double bond. This is equal to the ratio m(G–u–v)/m(G) where
m(G) is the number of perfect matchings of G and m(G–u–v) is the number of perfect
matchings of the graph with vertices u and v and their incident edges deleted. The
entry in A−1 for a pair of vertices that are connected by an edge is equal to the Pauling
Bond Order [1]. The entries for pairs of non-adjacent vertices are, apart from sign,
also given by the ratio m(G–u–v)/m(G), which is then known as the Pauling Long
Bond Order [10], a quantity that plays a part in the theory of molecular conduction
of graphene fragments [11]. The matrix P1 for a benzenoid therefore has entries that
are equal to the Pauling Bond Orders for each edge pair, and otherwise are zero. At
each iteration, the matrix Pk (k > 0), if it exists, is a symmetric, weighted form of the
adjacency matrix of G, with each row sum equal to 1. (For a justification of this, see
the combinatorial reformulation of the algorithm described below.)

It is not obvious from this formulation that a non-singular P0 guarantees the exis-
tence of a sequence of Pk matrices with k > 0 for benzenoids, as in general the
Hadamard product of non-singular matrices may be singular. Nor is it clear that the
iterative process will always converge to a limit. Our alternative formulation (see
later) shows that neither of these potential problems can occur for benzenoids. How-
ever, application of the CKC algorithm to non-benzenoid bipartite graphs could easily
lead to the first problem: for example, one exotic isomer of naphthalene has a molec-
ular graph consisting of a square fused to an octagon; the graph is non-singular, but
P1 is singular, and the iteration breaks down immediately.

In discussing the algorithm, the authors of Ref. [1] utilise an adjacency matrix Ki

for each perfect matching i = 1, . . ., m(G) of a graph G: the matrix Ki has entries 1
in positions (u, v) and (v, u) for all pairs connected by a double bond in the i th match-
ing, and 0 elsewhere. Each matrix Ki is symmetric, self-inverse and has a determinant
(−1)n/2, where n is the number of vertices in the graph. The assumption is made [1]
that, for a non-singular starting benzenoid, the iteration process will always converge
to a K matrix that represents a perfect matching with F(G) simultaneously benzenoid
hexagons, or to a linear combination of K matrices from which a perfect matching
with F(G) simultaneously benzenoid hexagons can be deduced. This assumption is
in fact incorrect (see below).

The CKC algorithm is not difficult to program. Some experimental observations
from the small number of calculations described in Ref. [1] and calculations with
our own programs on datasets including all Kekulean benzenoids with at most 13
hexagonal faces (1,671,018 graphs, generated with CaGe [12]) are listed below.

(i) In all the cases examined, the iterative process converges smoothly within a
few iterations. (For example, n/2 iterations are sufficient to give rms average
deviation per element between successive Hadamard product matrices of at
most 10−12 for cases with up to 9 hexagons.) Convergence is immediate in
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some cases, with P1 = P2, as for benzene (see below). The determinant of
Pk evolves during the iterative process: for benzenoids, the initial determinant
is |det A| = |det P0| = [m(G)]2, which is typically a large number, but the
Hadamard product, P1, has a determinant similar to that of A−1, i.e., of mag-
nitude ∼ [m(G)]−2, which can be perilously close to zero for some classes
of benzenoid [13]. The final determinant has a magnitude that depends on the
case, as explained below.

(ii) The entries in the converged Hadamard product are all drawn from the set
{1, 1/2, 0}. For all the benzenoids examined, the converged P∞ has the same
general structure: it has entries 1/2 corresponding to the edge sets of h disjoint
‘ambiguous’ hexagons (for some h ≥ 0), and entries 1 for a further set of
n/2 − 3h ≥ 0 edges that are disjoint from each other and from the hexagon
edges. The entries 1 and 1/2 are interpreted as fixed double bonds and potential
double bonds, respectively.

(iii) The determinant of P∞ is (−1)n/2/24h , which arises by taking the overall
product of n/2 − 3h blocks of determinant −1, and h blocks of determinant
−1/16 (each hexagon has six edges of weight 1/2 that can be factored into
2 different matchings). In the vast majority of benzenoids tested, the limiting
case h = 0 is encountered, and P∞ is the K matrix for a perfect matching
of G. The other limiting case, where h = n/6, seems to be much less com-
mon. The spectrum of P∞ consists of eigenvalues +1,+1/2,−1/2,−1 with
multiplicities n/2 − 2h, 2h, 2h, n/2 − 2h.

(iv) The inverse of P∞ has entries +1 in all the positions where P∞ has a non-zero
entry, and in addition it has entries −1 for those pairs that correspond to the
three diagonals of each of the h ambiguous hexagons. It is easy to see that this
structure implies that taking the Hadamard product of P∞ and its inverse will
simply recover P∞, and hence that the process has converged.

Figure 1 illustrates 3 cases satisfying, h = n/6, h = 0 and 0 < h < n/6, giving a
pictorial interpretation of the converged matrix P∞ and its inverse. The first possibil-
ity, where all vertices belong to ambiguous hexagons is illustrated by benzene, which
has an adjacency matrix of circulant form, with au,v = 1 for u − v = 1 mod 6, and
0 otherwise. The inverse, A−1, has entries 1/2 for u − v = 1 mod 6, 0 for u − v = 2
mod 6, −1/2 for u − v = 3 mod 6, and 0 otherwise (or, in chemical nomenclature,
1/2, 0,−1/2 for ortho, meta and para pairs). The Hadamard product P1 has entries
+1/2 for all ortho pairs, and zero otherwise. The inverse P−1

1 has entries +1 for ortho
pairs, −1 for para pairs, and zero otherwise. Convergence is therefore reached on the
first cycle. Small benzenoids with h = n/6 are rare. Apart from benzene itself, no
examples exist for benzenoids with 12 or fewer hexagons. Figure 2 shows the only
other example with h = n/6 that we have found, the 13-hexagon hexabenzocoronene.

The second row in Fig. 1 illustrates the second limiting case with the molecular
graph of naphthalene, which has the more typical behaviour of rapid but not immediate
convergence of the Hadamard product to a K matrix. (Entries in the bond-order matrix
converge to either 1 or 0.) For example, the four classes of symmetry-distinct edges
labelled a, b, c, d in Fig. 1b bear entries 1/3, 2/3, 1/3, 1/3. During the iterations,
these follow trajectories
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(b)

(c)

(a)

Key: 1 1/2 0  -1

a

b c

d

Fig. 1 Three types of outcome of the CKC algorithm for a benzenoid. Rows a, b and c illustrate cases with
h = n/6 (in this case, h = 1), h = 0 and 0 < h < n/6, where h is the number of hexagons with all edge
weights equal to 1/2 (the ‘ambiguous’ hexagons). The pictures represent the converged Hadamard product
(left) and its inverse (right), with line style indicating values of entries (see Key). Vertices joined by hatched
lines are not adjacent in the graph. As can be seen from the positions of +1 (bold) edges, each converged
Hadamard product matrix is self-replicating under Hadamard multiplication with its inverse. Letters a, b,
c, d on the naphthalene structure refer to the discussion in the text

(b)(a)

Fig. 2 a Molecular graph of hexabenzocoronene, an example where in the limit the vertices of the graph
are covered by a set of hexagons with edge entries equal to 1/2. b In the inverse matrix, the entries are +1
for the edges of those hexagons and −1 for their diagonals

a : 1/3 → 1/6 → 1/102 → 1/1020102 → · · · → 0;
b : 2/3 → 5/6 → 101/102 → 1020101/1020102 → · · · → 1;
c : 1/3 → 1/6 → 1/102 → 1/1020102 → · · · → 0;
d : 1/3 → 2/3 → 100/102 → 1020100/1020102 → · · · → 1;
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which can be understood in detail in terms of the combinatorial reformulation of the
algorithm discussed below. For naphthalene, the limit is the matrix for the unique fully
symmetric perfect matching shown in Fig. 1b, which realises F(G) = 2.

The third row in Fig. 1c illustrates an intermediate case (0 < h < n/6) with
the molecular graph of anthracene. The proposed [1] interpretation of P∞ is that the
matrix is the average of K matrices for two perfect matchings (see Fig. 3), each of
which realises the Fries number of 2 for this linear polyacene graph.

A point which is not discussed in detail in Ref. [1] is how to construct a Fries
structure from a Hadamard product when h �= 0. Each hexagon with six entries 1/2
leads to two possible assignments of formal double bonds within that face, implying
an exponential algorithm with 2h choices to determine F(G), if indeed F(G) can be
reached in this way. Kekulene (Fig. 4) is an example where many of the 2h choices
turn out not to yield the full Fries number; in this case only 2 of the 64 choices give
F(G). Maximum values of h for the benzenoids (obtained by the direct search to be
described in the next section), and hence worst cases for the exponential algorithm are
given in Table 1. It is easy to construct infinite series in which h grows linearly with n:
one such is shown in Fig. 5, where each increase of n by 10 adds an extra ambiguous
hexagon to the CKC result, but a correct canonical Fries structure is obtained for only
2 of the 2h possible assignments of double bonds within the ambiguous hexagons.
Without some way to avoid the exponential step, the CKC algorithm would rapidly
become impractical for general sets of larger benzenoids.

=
1_
2

+

Fig. 3 A Hadamard product matrix resulting from the CKC algorithm. Here h = 1, and this is interpreted
as a superposition of two Kekulé structures [1]

Fig. 4 The converged Hadamard product matrix resulting from application of the CKC algorithm to ke-
kulene is shown on the left. Here h = 6, and there are 64 perfect matchings that can be constructed by
assignment of three double bonds within each dotted hexagon. Of the 64 choices: 2 give 6 benzenoid hexa-
gons, 30 give 7, 30 give 8 and only 2 give the 9 benzenoid hexagons corresponding to a Fries canonical
structure. One such choice is shown on the right; the other can be found by a concerted switch of bonds in
all formerly dotted hexagons
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Table 1 Applications of the CKC algorithm to benzenoids with H hexagonal faces: hmax is the largest
number of faces with entries 1/2 for all edges appearing in the converged structures

H 1 2 3 4 5 6 7 8 9 10 11 12 13

hmax 1 0 1 2 1 2 3 3 4 4 4 5 7

Note that kekulene (Fig. 4), with 12 hexagonal faces and h = 6, is not a benzenoid on the present definition,
as it has a hole

(b)

(c)

(d)

(a) F0

F1

F2

F3

Fig. 5 An infinite family series illustrating the worst-case exponential nature of the CKC algorithm. The
graph Fk+1 is created by fusion of a phenalene fragment onto the perimeter of Fk, as shown. Fk has 3k + 1
hexagonal faces, and 2 × 3k perfect matchings, and the CKC algorithm selects a structure with k + 1
ambiguous hexagons and 2k double bonds, as shown on the left. The Fries number is 2k + 1, which is
realised by exactly 2 of the 2k+1 assignments of double bonds in the hexagons, one of which is shown on
the right. The cost of brute-force checking of all possibilities is therefore exponential

3 Does the CKC algorithm always give the Fries number?

For the CKC algorithm, we have not found any instance of non-convergence for Keku-
lean benzenoids, but the question remains as to whether, when the algorithm converges,
it always gives a correct result. From this point of view, failure of the CKC algorithm
might occur in one of two ways. First, the algorithm might lead to a unique perfect
matching that has fewer than F(G) simultaneous benzenoid hexagons. Secondly, the
algorithm might lead to a Hadamard product matrix that generates 2h choices of per-
fect matchings, with h �= 0, where no choice realises the Fries number of the given
benzenoid. In fact, failures of both kinds occur. A search of small benzenoids was
made. For each graph, each matching realising the Fries number was checked to see
whether it had the property that its edges formed a subset of the edges with non-zero
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Table 2 Failures of the CKC algorithm

H 1 2 3 4 5 6 7 8 9 10 11 12 13

NK 1 1 2 6 15 51 190 764 3,223 14,107 62,879 284,918 1,304,861

NF 0 0 0 0 0 0 3 13 80 421 2,034 10,451 52,065

N0 0 0 0 0 0 0 3 12 79 419 2,005 10,283 50,693

Nh 0 0 0 0 0 0 0 1 1 2 29 168 1,372

NK is the number of Kekulean benzenoids with H hexagonal faces, and NF is the number of cases where
the algorithm fails to deliver the correct Fries number. In the final two rows, NF is broken down into N0,
the number of cases where the algorithm gives a unique matching with incorrect Fries number, and Nh ,
the number of cases where the algorithm gives two or more choices of matchings, all with incorrect Fries
number

(a)

(b)

* *

*

Fig. 6 The three smallest counterexamples to the CKC algorithm. These are all of the first kind, in which
CKC converges to a single sub-optimal perfect matching. a The converged perfect matchings for three
7-hexagon benzenoids produced by the algorithm. Each has only 5 benzenoid hexagons. b Fries canonical
matchings for the same benzenoids, showing that F(G) = 6 can be achieved in each case. The star shows
how the sub-optimal result of the CKC algorithm could be converted to optimal by an ad hoc rotation of
the bonds within the starred hexagon

weight given by the CKC algorithm. This search revealed the smallest counterexam-
ples to the conjecture that the CKC algorithm for a benzenoid always yields a Fries
structure.

Table 2 gives some statistics for the search. It can be seen that the algorithm fails
in a small proportion of cases, from seven hexagons onwards, and that, at least ini-
tially, the great majority of those failures are of the first kind, where the converged
matrix represents a single perfect matching with fewer than F(G) benzenoid hexagons.
Figure 6 shows the three smallest examples of failure of the algorithm. In each case,
P∞ has h = 0 and has five benzenoid hexagons, but the true value is F(G) = 6.
Figure 7 shows the two smallest examples of failures of the second kind, those where
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*

*

(a)

(b)

Fig. 7 The two smallest counterexamples of the second kind (with h �= 0 hexagons composed of half-
double bonds) to the CKC algorithm. a The smallest benzenoid counterexample with h = 2 has a total of
8 hexagonal faces (left). All four assignments of the ambiguous hexagons yield 5 benzenoid hexagons, but
(right) the correct total of F(G) = 6 benzenoid hexagons can be achieved by reversing the CKC choice of
fixed double bonds in the starred hexagon. b The counterexample with h = 1 has 9 hexagonal faces, and
F(G) = 7, whereas the CKC algorithm finds only 6 benzenoid hexagons (left). Ad hoc reassignment of
fixed double bonds in the starred hexagon would again be needed to achieve the correct Fries number

h is non-zero; in each case the best assignment of the ambiguous hexagons recovers
only F(G) − 1 benzenoid hexagons. Figure 8 shows a highly symmetrical counter-
example where the shortfall between the CKC result and the true Fries number is 3.
This molecular graph is also interesting because it is a leapfrog benzenoid [14], and
hence totally resonant (i.e., has Clar number C = n/6, so that every vertex is present
in one sextet). The leapfrog is constructed from a parent benzenoid graph by placing a
new π/6-rotated hexagon within each hexagonal face, adding an edge to cross at right
angles any parent edge that is common to two hexagonal faces, and deleting all edges
and vertices of the parent. A leapfrog benzenoid has a single canonical Clar structure
in which a sextet is located on each face that arose from a parent face. In the case of
the graph in Fig. 8, the parent is ovalene.

4 Combinatorial reformulation of the CKC algorithm

Given that we now know that the CKC algorithm does not invariably produce a per-
fect matching or linear combination of perfect matchings that yields F(G) benzenoid
hexagons, a question arises: given that the algorithm appears always to converge, at
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Fig. 8 A symmetrical
counterexample to the CKC
algorithm. a The converged
CKC structure has full D2h
symmetry, which is broken on
assigning the four ambiguous
hexagons, to give, at best, C2v
symmetry and 12 benzenoid
hexagons. b The Fries canonical
structure also has C2v
symmetry. (Even with best
possible assignment of the
ambiguous hexagons of the
CKC structure, reassignment of
fixed double bonds in either the
three starred hexagons of the top
row in (a) or their symmetry
equivalents in the bottom row is
required to achieve the full count
of F(G) = 15). c The Clar
structure for this leapfrog
benzenoid, with C(G) = 10

***
(a)

(b)

(c)

least for Kekulean benzenoids, what characterises the matchings or combinations of
matchings that it does produce?

The progression of the CKC algorithm for benzenoids through matrices P0,

P1, . . ., Pk can be understood in terms of iterative refinement of convex combinations
of perfect matchings. Given a set of k matrices M1, M2, . . ., Mk and k probabilities
p1, p2, . . ., pk (0 ≤ pi ≤ 1) such that p1 + p2 + · · · + pk = 1, the matrix

M =
k∑

i=1

pi Mi (3)
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is called a convex combination of the matrices M1, M2, . . ., Mk . If, as before,
K1, K2, . . ., Km(G) are the m(G) matrices corresponding to the perfect matchings
of G, then each matrix Pk of the CKC algorithm for k ≥ 1 corresponds to a convex
combination of the Ki matrices computed as follows. In computing Pk+1 from Pk , the
weight wi of matching Mi is the product

wMi =
∏

(u,v)

p(k)
uv , (4)

where (u, v) is an edge of the matching and p(k)
uv is the entry in Pk corresponding to that

edge. It is possible to prove for benzenoids that Pk+1 is then the convex combination

Pk+1 =
m(G)∑

i=1

wi

S
Ki (5)

where S is the scaling factor used to convert the weights to probabilities, i.e.,

S =
m(G)∑

i=1

wi . (6)

The proof of the exact equivalence step-by-step of this combinatorial formulation
with the Hadamard-matrix formulation is given in the “Appendix”.

The iteration begins with P0 = A, which gives equal weight to all edges, and pro-
duces as the first guess a linear combination in which all perfect matchings appear
with equal probability 1/m(G). The matrix P1 coincides with the matrix of Pauling
Bond Orders for edges and has zero entries elsewhere, i.e., exactly as given by the
Hadamard product of A and A−1. The new convex combination of matchings has
probabilities proportional to products of Pauling Bond Orders. We call these products,
for reference, the Pauling Weights (see Fig. 9 for examples). The convex combination
determines the new edge weights, and so on. At convergence, the edge weights and
the weights of the matchings are self-consistent, each set leading to the other. From
this description it is easy to see why the CKC algorithm converges to matrices with
row sums equal to 1.

The key characteristic of benzenoid graphs that makes it possible to reformulate
the Hadamard matrix method in these combinatorial terms is that in the expansion
of the determinant of a weighted adjacency matrix (e.g. a matrix Pk), the sign of
every term is the same and is equal to (−1)n/2. It is this property that provides the
well-known relationship between the adjacency matrix and the number of perfect
matchings of a benzenoid [15,16] (det A = (−1)n/2 [m(G)]2), and is also the reason
that P1 = A ◦ A−1 gives the Pauling Bond Orders. It also leads to a single sign
for all weights in the convex combination of K matrices. A sufficient condition for
bipartite graphs for all terms in the determinant to have uniform sign is that for each
cycle C such that the graph G–C has a perfect matching, C is an aromatic cycle, i.e.,
|C | = 4k + 2. This cycle condition is obeyed by several wider classes of graphs,
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1

2

2

3

3

1 1

1 2

1 2

1

3

3

1

1

W  = 36

W = 324

W = 324

W = 36

1

2

2

2

2

1 1

1 1

1 1
W = 16

W  = 4

W  = 4

(a)

(b)

Fig. 9 Weightings of perfect matchings and the results of the CKC algorithm: a naphthalene; b anthra-
cene. In each case, the left column shows the molecular graph annotated with edge weights proportional to
Pauling Bond Orders. The centre column shows the full set of perfect matchings (Kekulé structures) with
their relative Pauling Weights. The righthand column shows the final result of the CKC algorithm, which
picks out the unique perfect matching of maximum Pauling Weight in (a) and a linear combination of the
pair of equivalent perfect matchings with maximum Pauling Weight in (b)

including hexagonal systems with 4k + 2-sized ‘holes’, such as kekulene. Where this
cycle condition is not obeyed, the CKC Hadamard-matrix algorithm can have terms
of different sign in the expansion of the determinants, and the equivalence of the two
formulations is destroyed (see Fig. 10). The combinatorial approach appears to us to
be more likely to provide chemically relevant results in these cases because it avoids
cancellations in the weights.

An implementation of this combinatorial version of the algorithm was made, and
was shown to give complete agreement with the Hadamard formulation at all stages
of the iteration, as it should. Explicit construction of matrix inverses is not needed,
nor is the Hadamard masking procedure of the previous formulation. However, the
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Fig. 10 Divergence of the combinatorial and Hadamard versions of the CKC algorithm. This hypothetical
structure is formally constructed by fusing three phenalene units and deleting their central atoms to make
‘holes’ of size 12. The structure is labeled with relative Pauling Bond orders. The perfect matchings pro-
duced by application of a the Hadamard version and b the combinatorial version differ in Pauling Weights
by a factor of 9:256 and are matchings of minimum and maximum weight, respectively. The matching in
(b) arising from the combinatorial procedure uniquely preserves conjugation in all three of the phenalene
units
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Fig. 11 Weight analysis for a counterexample to the CKC algorithm. This 7-hexagon benzenoid is the first
counterexample from Fig. 6. It has edge weights as marked in (a), and gives matching in (b) as the result
of the CKC algorithm (5 benzenoid hexagons), but can achieve F = 6 benzenoid hexagons, as shown in
(c). The two choices of fixed double bonds in the starred hexagon give Pauling Weights for the respective
matchings that are in ratio 12 × 16 × 16:12 × 15 × 15, with CKC choosing the matching with the larger,
and in fact maximum, product of bond orders

combinatorial version of the method requires construction of the complete set of per-
fect matchings of G, which unfortunately can take exponential time. The point of the
second method is, however, not computational efficiency, but clarity of interpretation,
especially in the case of understanding counterexamples to the CKC method.

A plausible conjecture, based on our examination with the new program of the com-
plete sets of benzenoids described earlier, is that the end result of the CKC algorithm
for a Kekulean benzenoid graph is either a perfect matching of maximum Pauling
Weight for the particular graph, or an average structure representing the superposition
of a set of perfect matchings of maximum Pauling Weight. Figure 11 analyses the first
counterexample to the CKC procedure from this point of view. In this case, there is
no perfect matching of maximum Pauling Weight that realizes the Fries number, and
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Fig. 12 Weight analysis for a counterexample to the CKC algorithm. This 8-hexagon benzenoid has edge
weights as marked in (a), and gives the matching in (b) as the result of the CKC algorithm (5 benzenoid
hexagons), but F = 6 benzenoid hexagons can be achieved, as shown in (c). Rotation of the matched edges
of the starred hexagon inter-converts the matchings but does not change the Pauling Weight, as the relevant
edge weights are 14, 18 and 18 in both cases. Both matchings achieve the maximum Pauling Weight for
this benzenoid, but CKC converges to the matching with fewer benzenoid hexagons

the CKC result corresponds to a matching with the maximum weight rather than max-
imum number of benzenoid hexagons. As the Figure shows, switching the matched
edges in one hexagon would simultaneously lower the Pauling Weight and increase
the number of benzenoid hexagons. A more interesting example is given in Fig. 12,
where there is a Fries canonical structure that has the maximum Pauling Weight, but
the CKC algorithm fails to find it, choosing instead a matching that is also of maximum
Pauling Weight but has only F(G) − 1 benzenoid hexagons. This separation between
matchings that start out the iterative process with equal weight is understandable; the
weight of a matching in subsequent iterations depends not only on its own Pauling
Weight but also on the weights of the other matchings with which it has edges in
common. As we have shown, this process can lead to convergence to a result that does
not maximize the Fries number.

5 Conclusions

The CKC algorithm, although it often finds Fries canonical structures, sometimes
fails. It seems that the algorithm emphasizes weight of perfect matchings, in the sense
defined above, over the number of benzenoid hexagons they contain. There are reliable
alternatives for determination of both Fries and Clar numbers of benzenoids [7]. As
we have shown, the Hadamard matrix and combinatorial formulations are equivalent
for benzenoids as defined here, although it could be argued that the latter gives a more
transparent interpretation. A sufficient condition for equivalence of the formulations
is the ‘sign condition’ set out in the previous section. For more general Kekulean
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graphs, the combinatorial formulation is still applicable, because it treats the signs of
the matrix entries correctly, and hence avoids the singularities and cancellations that
would be introduced by naïve application of the Hadamard matrix method. An example
of a hypothetical conjugated structure for which the two formulations are inequivalent
is shown in Fig. 10; in this case the combinatorial method yields a chemically plausi-
ble matching of maximum Pauling Weight, with fully conjugated phenalene circuits,
whereas the Hadamard formulation converges to an unlikely-looking matching that is
actually of minimum weight.

Finally, we return to the proposed [1] use of Fries canonical structures to find one
or more perfect matchings that realise the Clar number of the graph. Our computer
search revealed that for small benzenoids (with up to 13 hexagons), every matching
realising the Fries number had at least one choice for independent benzenoid hexagons
realising the Clar number. An implicit assumption in Ref. [1] is that a Clar structure
could always be determined from a canonical Fries structure (or at least, from one
of the type produced by the CKC algorithm). In order to evaluate this approach to
Clar structures further, it would be interesting to determine whether the following two
conjectures are true or not:

Conjecture 1 For all benzenoids G, there exists some perfect matching with F(G)

benzenoid hexagons for which there is a choice of C(G) independent hexagons.

Conjecture 2 For all benzenoids G, for every perfect matching with F(G) benzenoid
hexagons there is a choice of C(G) independent hexagons

Acknowledgments WM thanks NSERC for a Discovery Grant. PWF thanks Prof. Barry T. Pickup (Uni-
versity of Sheffield) for useful discussions. Claire Theuret (École Nationale de Chimie Physique et Biologie
de Paris) is thanked for assisting with calculations as part of an undergraduate project.

Appendix

This appendix explains why the combinatorial approach proposed in the main text is
equivalent to the CKC algorithm for benzenoids. It also provides greater insight about
what the CKC algorithm is actually computing. Use of a determinant computation to
determine the number of matchings of a benzenoid is a standard approach (see, e.g.,
Lovasz and Plummer’s classic textbook on graph matching theory [16]). A combinato-
rial explanation is included here, as it is required for understanding the combinatorics
of the CKC algorithm.

One definition of the determinant of an n × n matrix A is as

det(A) =
∑

π

sign(π)a1,π1a1,π2 , . . . , a1,πn (A.1)

where the sum is over all permutations π of 1 to n. If the matrix A is the adjacency
matrix of a benzenoid, it is well known that the non-zero terms in this expansion all
have the same sign (equal to (−1)n/2). The edges (1, π1), (2, π2), . . . , (n, πn) induce
a 2-regular subgraph that can be interpreted as the union of an ordered pair of perfect
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matchings. The components of this 2-regular subgraph are all even cycles of the ben-
zenoid. If both (u, v) and (v, u) are included then this is interpreted as a component
which is a 2-cycle.

To find the ordered pair of perfect matchings (M1, M2) corresponding to a non-zero
term in the determinant, first select the smallest numbered vertex of each cycle. If u
is the smallest vertex of a cycle and the determinant expansion includes the term au,v ,
then place edge (u, v) in the matching M1. To complete the assignment of edges to
M1 and M2, alternate between the two matchings on each cycle. This shows that in
the determinant expansion of the adjacency matrix of a benzenoid, the non-zero terms
are in one-to-one correspondence to ordered pairs of perfect matchings. The non-zero
entries of the adjacency matrix are all ones and the sign for each is (−1)n/2. Hence
for a benzenoid, the number of perfect matchings is the square root of the absolute
value of the determinant of the adjacency matrix. For graphs that are not benzenoids,
this approach to enumerating matchings does not always work because the signs of
the terms can differ and can result in some cancellation of terms. (An example of this
is given in Fig. 10).

If the initial matrix corresponds to one of the Pk matrices, then each edge (u, v) can
be considered to have a weight wu,v equal to the u, v entry in Pk ., i.e., p(k)

uv . Define
the weight of a perfect matching M to equal the product of the weights of its edges,
and denote it by wM . The determinant of Pk for a benzenoid is equal to

(−1)n/2
∑

(M1,M2)

wM1 wM2 (A.2)

where the sum is over all ordered pairs (M1, M2) of perfect matchings.
Jacobi’s theorem states that

A−1 = Adj(A)/ det(A) (A.3)

where entry i, j of Adj(A) is equal to

(−1)i+ j det
(

A[ j,i]
)

(A.4)

where A[ j,i] is matrix A with row j and column i removed. In considering the appli-
cation of this result to the matrix Pk , note that the only important entries of (Pk)

−1 for
our purpose are those which correspond to edges in the original graph since all others
are zeroed out when taking the Hadamard product.

The non-zero terms that contribute to A[u,v] for an edge (u, v) can be interpreted
as subgraphs consisting of an ordered pair of matchings M1 and M2 where M1 is a
matching containing the edge (u, v) and M2 is an arbitrary matching. But there is no
term in the determinant expansion for A[u,v] for the edge (u, v) as row u and column v

are deleted (although there can be a term for M2 which corresponds to (v, u) because
row v and column u are still included).
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The weight in the determinant expansion for A[u,v] for a given choice of M1 and
M2 is therefore equal to

1

det(A)

[
wM1

wu,v

]
wM2 . (A.5)

When the Hadamard product Pk ◦ P−1
k is taken, the contribution has magnitude

wu,v

1

det(A)

[
wM1

wu,v

]
wM2 (A.6)

and so the final contribution for the edge is equal to the sum over all ordered pairs
(M1, M2) of matchings where M1 contains the edge (u, v) of

wM1wM2

det(A)
. (A.7)

For benzenoids, the numerator and the denominator have the same sign and so the
resulting entries are non-negative. In this expression, there is a common factor

S =
m(G)∑

i=1

wMi (A.8)

in both the numerator (where it arises from making each possible choice for a second
matching M2) and the denominator (which is equal to (−1)n/2 S2). Cancel this out
on top and bottom to show that the entry for edge (u, v) in Pk+1 after the Hadamard
product has been made is

1

S

∑

M

wM (A.9)

where the sum is over all the matchings M that contain the edge (u, v).
A mathematically equivalent formula for the CKC matrix Pk+1 for a benzenoid is

therefore

Pk+1 = 1

S

m(G)∑

i=1

wMi Ki (A.10)

as indicated in the main text.
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